llama(服务器端)CLI 参考

llama CLI 工具可帮助您设置和使用 Llama Stack。安装 llama-stack 包后,CLI 即可在您的路径中使用。

安装

您可以通过两种方式安装 Llama Stack

  1. 作为包安装: 您可以通过运行以下命令直接从 PyPI 安装仓库

    pip install llama-stack
    
  2. 从源码安装: 如果您更喜欢从源代码安装,请按照以下步骤操作

     mkdir -p ~/local
     cd ~/local
     git clone git@github.com:meta-llama/llama-stack.git
    
     conda create -n myenv python=3.10
     conda activate myenv
    
     cd llama-stack
     $CONDA_PREFIX/bin/pip install -e .
    

llama 子命令

  1. download: 支持从 Meta 或 Hugging Face 下载模型。 下载模型

  2. model: 列出可用模型及其属性。 理解模型

  3. stack: 允许您使用 llama stack 分发构建一个 stack 并运行 Llama Stack 服务器。您可以在构建自己的分发文档中阅读有关如何构建 Llama Stack 分发的更多信息。

示例用法

llama --help
usage: llama [-h] {download,model,stack} ...

Welcome to the Llama CLI

options:
  -h, --help            show this help message and exit

subcommands:
  {download,model,stack}

下载模型

您首先需要在本地下载模型。

要下载任何模型,您需要模型描述符。这可以通过运行以下命令获得

llama model list

您应该会看到如下表格

+----------------------------------+------------------------------------------+----------------+
| Model Descriptor(ID)             | Hugging Face Repo                        | Context Length |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B                      | meta-llama/Llama-3.1-8B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B                     | meta-llama/Llama-3.1-70B                 | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp8           | meta-llama/Llama-3.1-405B                | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B                    | meta-llama/Llama-3.1-405B-FP8            | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp16          | meta-llama/Llama-3.1-405B                | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B-Instruct             | meta-llama/Llama-3.1-8B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B-Instruct            | meta-llama/Llama-3.1-70B-Instruct        | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp8  | meta-llama/Llama-3.1-405B-Instruct       | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct           | meta-llama/Llama-3.1-405B-Instruct-FP8   | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct       | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B                      | meta-llama/Llama-3.2-1B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B                      | meta-llama/Llama-3.2-3B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision              | meta-llama/Llama-3.2-11B-Vision          | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision              | meta-llama/Llama-3.2-90B-Vision          | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B-Instruct             | meta-llama/Llama-3.2-1B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B-Instruct             | meta-llama/Llama-3.2-3B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision-Instruct     | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision-Instruct     | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-11B-Vision         | meta-llama/Llama-Guard-3-11B-Vision      | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B:int4-mp1        | meta-llama/Llama-Guard-3-1B-INT4         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B                 | meta-llama/Llama-Guard-3-1B              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B                 | meta-llama/Llama-Guard-3-8B              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B:int8-mp1        | meta-llama/Llama-Guard-3-8B-INT8         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Prompt-Guard-86M                 | meta-llama/Prompt-Guard-86M              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-2-8B                 | meta-llama/Llama-Guard-2-8B              | 4K             |
+----------------------------------+------------------------------------------+----------------+

要下载模型,您可以使用 llama download 命令。

Meta 下载

这里是一个示例下载命令,用于获取 3B-Instruct/11B-Vision-Instruct 模型。您需要 META_URL,可以从此处获取

使用以下命令下载所需的检查点

# download the 8B model, this can be run on a single GPU
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL

# you can also get the 70B model, this will require 8 GPUs however
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL

# llama-agents have safety enabled by default. For this, you will need
# safety models -- Llama-Guard and Prompt-Guard
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL

Hugging Face 下载

本质上,上面的命令仍然适用,只需将 --source meta 替换为 --source huggingface 即可。

llama download --source huggingface --model-id  Llama3.1-8B-Instruct --hf-token <HF_TOKEN>

llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>

llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*

重要提示:设置环境变量 HF_TOKEN 或将 --hf-token 参数传递给命令以验证您的访问权限。您可以在 https://hugging-face.cn/settings/tokens 找到您的 token。

提示: llama download 的默认行为是运行 --ignore-patterns *.safetensors,因为我们在 original 文件夹中使用 .pth 文件。但是,对于 Llama Guard 和 Prompt Guard,我们需要 safetensors。因此,请使用 --ignore-patterns original 运行,以便下载 safetensors 并忽略 .pth 文件。

列出已下载模型

使用以下命令列出已下载的模型

llama model list --downloaded

您应该会看到如下表格

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model                                   ┃ Size     ┃ Modified Time       ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8     │ 1.53 GB  │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B                             │ 2.31 GB  │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M                        │ 0.02 GB  │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB  │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B                             │ 5.99 GB  │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B                             │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB  │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B                        │ 2.80 GB  │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4                   │ 0.43 GB  │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘

理解模型

llama model 命令可帮助您探索模型的接口。

  1. download: 从不同来源下载模型。(meta, huggingface)

  2. list: 列出所有可供下载的模型以及部署这些模型的硬件要求。

  3. prompt-format: 显示 llama 模型消息格式。

  4. describe: 描述模型的所有属性。

示例用法

llama model <subcommand> <options>

llama model --help
usage: llama model [-h] {download,list,prompt-format,describe,verify-download,remove} ...

Work with llama models

options:
  -h, --help            show this help message and exit

model_subcommands:
  {download,list,prompt-format,describe,verify-download,remove}

描述

您可以使用 describe 命令了解有关模型的更多信息

llama model describe -m Llama3.2-3B-Instruct
+-----------------------------+----------------------------------+
| Model                       | Llama3.2-3B-Instruct             |
+-----------------------------+----------------------------------+
| Hugging Face ID             | meta-llama/Llama-3.2-3B-Instruct |
+-----------------------------+----------------------------------+
| Description                 | Llama 3.2 3b instruct model      |
+-----------------------------+----------------------------------+
| Context Length              | 128K tokens                      |
+-----------------------------+----------------------------------+
| Weights format              | bf16                             |
+-----------------------------+----------------------------------+
| Model params.json           | {                                |
|                             |     "dim": 3072,                 |
|                             |     "n_layers": 28,              |
|                             |     "n_heads": 24,               |
|                             |     "n_kv_heads": 8,             |
|                             |     "vocab_size": 128256,        |
|                             |     "ffn_dim_multiplier": 1.0,   |
|                             |     "multiple_of": 256,          |
|                             |     "norm_eps": 1e-05,           |
|                             |     "rope_theta": 500000.0,      |
|                             |     "use_scaled_rope": true      |
|                             | }                                |
+-----------------------------+----------------------------------+
| Recommended sampling params | {                                |
|                             |     "temperature": 1.0,          |
|                             |     "top_p": 0.9,                |
|                             |     "top_k": 0                   |
|                             | }                                |
+-----------------------------+----------------------------------+

Prompt 格式

您甚至可以运行 llama model prompt-format 查看所有模板及其 token

llama model prompt-format -m Llama3.2-3B-Instruct

alt text

将向您显示模型接口的 Markdown 格式描述,以及针对各种场景如何格式化 prompt/消息。

注意:终端中的输出会以彩色打印以显示特殊 token。

删除模型

您可以运行 llama model remove 删除不需要的模型

llama model remove -m Llama-Guard-3-8B-int8